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Abstract. The dielectric function of a composite depends on the geometry of the composite and
the dielectric functions of the constituent materials. In the Bergman—Milton spectral representation
for a two-component composite, all of the relevant geometric information can be captured in a
spectral function which is independent of the material properties. Extracting the spectral function
from experimental values of the dielectric function would be a compact way of presenting a large
body of data and highlight the role of geometry in determining the electrical properties of the
composite. We show that known constraints on the spectral function make it possible to solve
the inverse problem of determining the spectral function directly from experimental measurements
of the reflectance if one of the components has a resonance and data are taken in the restrahlen
band, where the real part of the dielectric function of the optically active material is negative. We
demonstrate the method using numerical simulations of the reflectance of a model system with
physically reasonable values for the dielectric functions of the two components. Our results show
that the spectral function determined by this method is stable against the introduction of noise and
agrees with that previously calculated directly for the same model geometry. We suggest that this
technique will be useful when used with real experimental data.

1. Introduction

The problem of calculating the dielectric constant of a composite material is an old one, dating
back to Maxwell [1], and was already a mature subject by the 1970s [2, 3]. It has continued
to be a subject of active research, driven by the increasing importance of composite materials.
A significant theoretical advance was the spectral representation for the dielectric function
of a two-phase composite, independently developed by Bergman [4] and Milton [5]. This
mathematically elegant representation has the appealing property of separating the influence
of the geometry of the composite from the influence of dielectric properties of the constituent
components. The spectral function of a composite would be a compact way of representing
experimental data taken over a range of frequencies and would highlight the role of geometry
in determining the effective properties. It could also provide a link between data taken at
different temperatures for the same composite material or even completely different properties
like the dielectric function and the magnetic permeability, which will depend on the composite
geometry in the same way. Despite this, applications to the analysis of real experimental data
have been mainly limited to calculating bounds on the dielectric function of the composite,
although there have been two attempts [6, 7] to fit the dielectric response of brine-saturated
rock using an analytic form for the spectral function.
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In this paper we develop a method for extracting the spectral function directly from
experimental measurements, which can be regarded as an inverse problem [8,9]. In this
initial paper, we will use simulated data but we plan in subsequent publications to apply the
technique to actual experimental data. By doing numerical simulations of a two-dimensional
(2d) square net with random site substitution, we will demonstrate that it is possible to solve
the inverse problem of determining the spectral function from the dielectric functions of the
pure materials and dielectric properties of the composite. Our results are in good agreement
with the spectral function obtained previously by direct methods [10]. A key result of this work
is the stability of the spectral function against the introduction of noise, both in the simulated
dielectric properties of the composite and in the assumed values for the dielectric functions of
the pure materials. Finally, we will discuss possible experiments that would provide a test of
this approach using real data.

2. The spectral function

Consider a two-component composite and label the components A and B, with dielectric
constantg,a, andeg, respectively. The dielectric constants are, in general, complex functions
of the frequencyw. The composite has a dielectric constanthich depends oma, ¢g, and

the geometry of the composite. If we consider A to be the host, and B to be the inclusion, we
define the complex variable

1
- - 1
SA 1- EB/8A ( )
and define the scaled dielectric function of the composite tmge= ¢/ ea. The spectral
functionha (x) is defined via the integral [4, 5, 10-12]

1
ma(sa) = 1—/ ha®) dx @
0 SA—X

The spectral functioha (x) is a positive real function of a real variableand is only non-zero
inthe interval 0O< x < 1. It can be interpreted as the density of poles of the dielectric function
of the composite [10,11], and contains all of the geometrical information required to determine
m. In the thermodynamic limit, the line of singularities on the real interval[0, 1] becomes
a cut on the real axis in the complexplane andia (x) is the discontinuity ofnzs across the
cut [6].

Equivalently we could consider B to be the host and A the inclusion. In this case we would
have

o=t 3)
1-— EA /SB

and define the scaled dielectric function of the composite teipe= ¢/ ¢g. The spectral
functionhg(x) is defined via the integral

L hg(x) dx

mae) =1 [ 1O, @
0 S — X

We show in appendix A that the spectral function(x) contains a delta function at = 0

with weight

®)

which is the dielectric function of the compositesif = 0, andsg = 1. We use the notation
og = mp(1l) to emphasize thatg is also the conductivity of the composite in the percolation

1
UB:mB(l)zl_/ he(x) dx
0 1—x
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problem [13] when the A phase is a void, and the B phase has unit conductivity [7]. The delta
function inia (when A is the host) only has non-zero weight when the B phase (the inclusion)
percolates. Similarly;g(x) contains a delta function at= 0 with weight

1
UA=mA(1)=1—/ hAl(x—)dx (6)
0 — X
which is the dielectric function of the compositeeif = 0, andsa = 1. The delta function in
hg (when B is the host) only has non-zero weight when the A phase (the inclusion) percolates.
Note that whilema, mg, ands are in general complexa, og, andx are always real.
The definition of the spectral function has a simple dependence on which material, A or

B, is arbitrarily chosen as the host, because from (1) and (3)

satsg=1 (7)
and we show in appendix A that

xha(x) = (1 —x)hg(l—x). (8)
This suggests the definition of a new function

g(x) = xha(x) = (1 —x)hg(l—x) 9)

which we will call thereduced spectral functiornThe reduced spectral functiogix), has the
advantage of separating the delta function at the origin from the rest of the spectral function [14].
The functiong (x) is finite everywhere and goes to zero at hetlk 0 andx = 1, as we will

show later. The spectral functiorisy, andhg, are then written in terms gf as

ha(x) = ? +0gd(x) (10)

and

hg(x) = @ +0ad(x). (11)

The properties of the spectral function have been extensively studied and a number of
constraints are known [4, 5, 10, 11], which we summarize. All of the momeritsegist and
in particular the zeroth moment satisfies

1
1o =f ha(x) dx = pg
1 12)
ne = / hg(x) dx = pa
0

wherepa is the volume fraction of component A apg = 1 — pa is the volume fraction of
component B. Clearly

16 *+ g = pa+ps =1 (13)
The first moment is the same for both spectral functions,

1 1
n1 =/ xha(x) dx =/ xhg(x) dx (14)
0 0
and for an isotropic material, always has the form

U1 = PywDPADPB (15)

where the parameter,, is determined from the weak-scattering limit when the difference
between the dielectric constants of the two materials, A and B, is small [15]. For a macro-
scopically isotropic continuum composite ihdimensions, withany inclusion geometry,
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pw = 1/d, as shown by Landau and Lifshitz [16]. For lattice problems there is a connection
between the weak-scattering limit and dilute limit [10,17] and= p;, wherep;, is the initial
slope of the conductivity in the percolation problem. The initial slope can be calculated for
most lattice problems [18]. For example, a hypercubic latticé dimensions with random
bond substitution hag,, = p; = 1/d, and the 2d square net with random site substitution
hasp, = p; = 1— 1/7, which we use later in this paper. We therefore tigats a known
guantity.

The spectral functionf(x), may diverge in the limitx — O but becauséia(x) is
normalizable, any singularity at = 0 must be integrable and thus limy xka(x) = O.
From equation (8) this implies liga; 2g(x) = 0. Similarly, lim,_¢xhg(x) = 0 implies
Iimle ha(x) =0.

From the properties of the spectral function, we deduce that the reduced spectral function
g(x) is also real and positive and that all of the momentg ekist. From the constraints on
the zeroth moments @f(x) we obtain

/1 glx)dx
o+ = PB
0, = (16)

/lg(l—x)dx
oat | ———— =pa
0

X

and by adding these two equations we have

1
g(x) dx _
O'B'l‘('J'A""/O m—l (17)

The first moment of: can be rewritten as

1 1 1 _
M1 = / gx) dx = p, (UB +/ 8() dx) <0'A +f M) (18)
0 0 X 0 X

Finally, the limits onz(x) atx = 0 andx = 1 imply
80 =g(1)=0 (19)
which is also required by equation (17).

3. Determining the spectral function from experimental data

3.1. General considerations

If ea(w), eg(w), ande(w) are known, the problem of determining the spectral function is
equivalent to solving the inverse problem of extractirig) from

1
m(s):l—f hx) dx (20)
0

S —X

wheres is a function ofw. This is an example of an inhomogeneous Fredholm equation [8] of
the first kind and, as is frequently the case [9], the keka@l, x) = 1/(s — x) is sufficiently
ill-conditioned that experimental noise im will result in a meaningless, wildly oscillating
solution fork. The standard method of dealing with this problem is to incladgriori
knowledge about the solution into the kernel, a process known as regularization [8,9]. The
simplest form of regularization usually involves some assumption about the smoothness of
the solution, but ang priori knowledge can be included. As we will show below, the known
properties of the spectral function discussed in section 2 provide suffecpaidri knowledge

to regularize the kernel.
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In addition to the problem of regularization, there is the problem of loss of information
when we take data at a discrete set of data points. The integral transform, equation (20), is a
smoothing or broadening process and, even in principle, it is only possible to do the complete
unfolding for a continuum of data. To minimize this loss of information we would like the
kernel, or broadening function, to be as sharp as possible. This is achieved when the data are
taken for values of that are close to the cute [0, 1]. In previous work [10] we determined
the spectral function for random networks by doing numerical simulatiomsaf a track just
above the cut. The imaginary part of the resultingvas the spectral function, convoluted
with a narrow Lorentzian function.

In an actual experiment, thevalues are determined by the dielectric functions of the
two components. We obtain the desirettack, that passes near to the cut, if there are data
over a frequency range where ®g/¢g) < 0 which can be achieved if at least one of the
materials has at least one resonance. A convenient case is that when there is a resonance in one
material, while the other material is essentially inert. For example, suppose component B has
a constant real dielectric functieg (w) = eg and component A has aresonance at a frequency
wro. For frequencies between the transverse optic frequengy, and the longitudinal optic
frequencyw, o, the real part of 5 is negative and follows a track just above or just below the
cutx € [0, 1]. Thus, the data in this restrahlen band [19] will be the best data for the inverse
problem of extracting: from m. The distance from the track to the cut (i.e. the imaginary
part of s) is proportional to the width of the resonance and consequently a sharp resonance
line is best for extracting the spectral function. As with the numerical simulations [10], if the
linewidth is very narrow the spectral function is simply proportional to the imaginary part of
m [20]. Previous attempts at obtaining the spectral function from the dielectric function of
brine-saturated rock [6, 7] have had limited success because the data were taken at yalues of
away from the branch cut, and thus could not resolve the structure in the spectral function.

For most materials, direct measurement of the dielectric function at the appropriate
frequencies (betweenro andw, o) is not possible. The experimentally accessible quantity
is the reflectance at normal inciden@w), which is related to the dielectric function via

Je—1
Je+1l

The complex dielectric constant can be obtained from the complex reflectivity, p€?,

wherep = V/R. If R(w) is measured over a wide frequency range the phasejshiftcan be
determined by extrapolating the data to low and high frequencies and performing a Kramers—
Kronig analysis. Although this is a standard procedure [21] it does introduce additional errors
into ¢ so we bypass the Kramers—Kronig analysis and extract the spectral function directly from
reflectance data. This results in a very non-linear inversion problem but this complication is
more than compensated for by the fact that we only use measured data, and no extrapolations
are needed. It has the added advantage that the constraints imposed on the spectral function
guarantee that the resulting dielectric function of the composite satisfies the Kramers—Kronig
relations [22], and the Bergman—Milton bounds [4, 5].

2

R= ‘ (21)

3.2. The numerical algorithm

We develop an algorithm to determine the spectral function by doing a non-linear least-squares
fit to reflectance data with additional constraints imposed to ensure that the spectral function
has all of the properties listed in section 2. We minimizedhiesquaredunction

2 2 2
X" = Xconstraintt X& (22)
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where the function 2, ,.iiMpPOSes the constraints of section 2 and the functipis defined
as

Ry — R(wy, e, €8, &, OA, 0B) 2
XI%ZZ( k s €A €B A B>' (23)

% Ok

The R, ando;, are experimental values for the reflectance and their standard deviations, taken at
aset of frequencias;. The functionR (wy, €a, ¢g, g, oa, og) determines the reflectance at the
pointss; = s(wy). It depends on thknowndielectric functions of the pure materialg,(wy)
andeg(wy), and theunknownspectral function, expressed as the reduced spectral function,
g(x), and the weights of the delta functioms, andog. The unknowns are adjusted to obtain

the best fit to the data, subject to the constraints. The algorithm is highly non-linear because
we must first calculate(g, oa, 0B, €a, £g) and then calculat® (¢) using equation (21). The
dielectric function of the composite is calculated in a completely symmetric way, that makes
no distinction between host and inclusion, via

1 1 _
o= da(i 2 [EOSY Lo, PRlna g,
SA o Xx(sa —x) 2 SB o Xx(sg—x)

The functiony 2, oqinddS defined as

op top +/1 —g(X) dx
0

2 _
Xconstraint= A1

x(1—x) B
1 1 _ 1 2
+ )\2 Pw (UB +/ g(x) dx><UA +/ M) - / g(X) dx
0 X 0 X 0
+ )\smooth|Vg(x)|2 (25)

where the first two terms impose theriori knowledge ofg (x) from equations (17) and (18)

and the third term is a smoothing term that can be included as necessaty. ared agrange
multipliers which can be adjusted for stability, as will be discussed in section 4.2. Note that
these constraints do not involve any experimental information about the composite geometry,
not even the volume fractions which will be obtained from the fit to the data. We assume that
Pw is known which will be the case for most composites of interest, as discussed in section 2.
For examplep,, = 1/3 for all macroscopically isotropic continuum composites.

The minimization is implemented using a Levenberg—Marquardt algorithm [23] written
so as to forbid negative values fek, og, andg(x). The weights of the delta functions,
andog, are discrete variables and we use a histogram representatigixfor The gradient
term in equation (25) is represented as a finite-difference operator and within the histogram
representation of the reduced spectral funcgigihe integrations are done exactly. Because the
minimization process is non-linear, we average over the results obtained from several different
initial guesses fog (x).

We conclude this section with a few comments on experimental considerations. It is
worth making a considerable effort to determingandeg as accurately as possible because
errors inea andeg propagate through the solution. This suggests that for the pure system,
reflection data should be taken over the widest frequency range possible before performing the
Kramers—Kronig analysis to obtain the real and imaginary parts of the dielectric function. Or, if
possible, ellipsometry should be used to determine the real and imaginary parts directly [24]. It
is less important to measure the reflectance of the composite over an extended frequency range
because no Kramers—Kronig analysis is required. Away from the restrahlen band the dielectric
functionssa andesg are both real, and are often similarin magnitude. Under these conditions the
dielectric functione is essentially determined by the Hashin—Shtrikman bounds [25], which
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are very tight wherey and eg have similar magnitudes. We also note that although the
principal goal in this work is to develop a method for determining the spectral function, this
approach also gives a useful method of extracting the dielectric function from the reflectance
for the special case of a two-component composite, where the dielectric functions of the pure
materials are known. By including the additional input of the dielectric functions of the pure
materials,ea andeg, the method is superior to one relying only on the reflectance of the
composite. By construction, the dielectric function of the composite will satisfy the Kramers—
Kronig relationship and all bounds that depend on only the isotropy of the composite and the
volume fractions. An inability to obtain a good fit to the data would indicate problems in the
reflectance data, the dielectric functions of the pure materials, the assumption that the data are
for a two-component material, or some combination of these three.

4. Numerical test of the method

4.1. The model

We have tested the algorithm using data generated by numerical simulations on a 2d square
network with random site substitution, as shown in figure 1. Sites are randomly chosen to be
type A with probabilitypa and type B with probabilitypg = 1 — pa. Bonds connecting two

A sites have a dielectric functian,, bonds connecting two B sites have dielectric functign

and bonds connecting an A sitea B site have a dielectric functior2eg/(ca + €g), SO the

model is completely symmetric under an<& B andpa <> pg interchange. For material A

we assign a dielectric functian (w) that exhibits a single resonance line and assign a constant
value foreg. This results ins(w) following a track in the complex-plane that passes near

the cutx € [0, 1]. At each probability we calculate the dielectric function of the composite
¢(w) for a range of frequencies that sweep through the resonance line of material A. From the
dielectric function we determine the reflectance

2
R) = [(Ve-1/We+D|".
We then regardR (w) as theexperimentaldata and proceed with the inverse problem of
determining the spectral function from these data. The direct simulations were done on a 128-

PR A Th SRR

*y "': I+
$ HH +
+
ot :LI-
+ R
5 14
T Ty

Figure 1. A 2d square net with random site substitution.
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by-128 square lattice at 500 frequencies and averaged over 64 realizations at each probability.
The dielectric function of the composite is calculated usifg-a transformation [26], where

we consider each bond to have an appropriate complex impedance, and we calculate the
equivalent impedance of the network.

Because actual experimental data will always have some random noise, and perhaps
systematic errors, our test is only valid if we introduce noise into the data. We note that there
are two sources of error. There are errors in the assumed values for the dielectric functions of
the pure materialga andeg, which lead to errors in(w), and there are errors in the composite
property,R(w). Errors inea andeg are the most damaging because they propagate through
every step of the calculation and, as discussed in the previous section, they are the most difficult
to reduce because we need both the real and imaginary parts of the dielectric functions of the
pure material.

We introduce errors into our simulated data in two ways. We calcut@i® exactly
using a model where the A material has a dielectric functiga(w) which exhibits a single
resonance line, and the B material has a frequency-independent dielectric cegstatD.

The reflectance data already include some noise, because we only average over 64 random
samples at each probability, but we add additional noise with a maximum amplituda2of 0
as discussed in appendix B. We do the analysis using a noisy valeg, fas discussed below.

We introduce noise intea in the following way. To material A we assign a dielectric
function consisting of two closely spaced Lorentz oscillators which results in a dielectric
function with the appearance of a single resonance line. The dielectric function can be written
as

w? w?
etrue(®) = € (1 T £ + P2 ) (26)

—w?2—i 2 — w2 —i
Wrpq— @ Iyiw  wrp,—© 210

We choose ., = 5.0 and, for the first oscillatotyp 1 = 1732 cmi™2, w1 = 299 cnT?, and
y1 = 10.2cmL. For the second oscillator we choasg, = 2236 cmi™t, w7 » = 301 cnt?,
andy, = 9.8 cm . We then calculat® (o) from syue(w) and add some noise to the reflect-
ance. Finally, we fit this noisy reflectance curve witkirrgleLorentz oscillator of the form

2

ea(w) = e (1 + #) (27)
5o — 0 —lyw

which is used in the analysis. The fitted (w) hase,, = 5217, wp = 2824 cm?,

wro = 3006 cmt, y = 9.860 cntl, andwp = (0% +w?,) = 4125 cm L. This

results in an error of about 4% i at high and low frequencies, but with a much smaller

percentage error near the resonance peak. We consider this esggtin and the resulting

error ins(w), to be systematic error.

Figure 2 is a plot of the reflectance of the pure A system. We show the true reflectance as
calculated fronmeyue(w), the reflectance with noise added, and the fitted reflectance that gives
ea(w). These curves indicate that the errors introduced have magnitudes that are probably
representative of real experimental errors.

Figure 3 is a plot in the complexplane of both,e(w) (calculated fronmeyue(w) andeg)
ands(w) (calculated from the fitteda (), andeg) which is used in the analysis. The two
curves are similar in the frequency range 300ém w < 400 cnT! where they are closest
to the cut, except that there is a kink in thge(w) curve (caused by the double oscillator) near
300 cntt, and the two curves are slightly offset (by absut 0.01 nearw = 350 cnT?). The
s(w) track is completely determined by the properties of the pure materials and is the same for
each set of data (i.e. each probability. We show botha (w) (in the lower half-plane) and
sg(w) (in the upper half-plane) and indicate the approximate frequency at various points on
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1.00

0.80 —

Reflectance

0.40 —

0.20 —

0.00

frequency [cm'l]

Figure 2. The reflectance of the pure A system as a function of the frequency. The broken curve
(= =) isRyue(w), as calculated fromyye (equation (26)). The dashed curve (- -) is Ryye(w)

with noise added. The solid curve ( ) is the fittR@w), which givesea (w) (equation (27)), as
discussed in section 4.1.

0.25

0.15

0.05

Im(s)

-0.05

-0.15

025 \ \ \

Re(s)

Figure 3. A plot of the complex variable(w) for the model system. The broken curve (-—-) is

the curvesyye(w), calculated from the true dielectric constaptge(w) andeg. The solid curve

(—) is the value of (w) obtained using the noisy (w), as discussed in section 4.1. The arrows
indicate the approximate frequencies at various points on the track and the thick line indicates the
cutx € [0, 1]. The curves in the upper half-plane age where B is taken as the host; the curves

in the lower half-plane arey, where A is taken as the host.

the curves. Becausg + sg = 1 the two tracks are related by a reflection aboutthéeal)
axis, followed by a reflection about the lime= 0.5. The thick line on the real axis indicates
the cut where the spectral functianx) is non-zero.
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0.6

0.5

0.4

0.3

Reflectance

0.2

0.1

0.0 -

o

frequency [cm'l]

Figure 4. The reflectanceR (w), of a 2d square net with random site disorder and the concentration
pa = 0.50. The broken curve (——-) is the true reflectamitg,e(w), as calculated by the simul-
ations. The dashed curve {- -) is Ryye(w) with noise added. The solid curve (—) is the
fitted R(w), which is used to determine the spectral function. The dash—dot curve{}-is the
effective-medium-theory curve.

0.50

0.45 —

0.40 —

0.35 —

0.30 —

Reflectance
T

0.25 —

0.20 —

0.15 —

0.10
0 100 200 300 400 500 600 700 800

Y

frequency [cm™

Figure 5. The reflectanceR (w), of a 2d square net with random site disorder and the concentration
pa = 0.20. The broken curve (- —-) is the true reflectartg,e(w), as calculated by the simul-
ations. The dashed curve {- -) is Ryye(w) with noise added. The solid curve (—) is the
fitted R(w), which is used to determine the spectral function. The dash—dot curve-{}is the
effective-medium-theory curve.

We compute data for the reflectance of our model composite at eleven different concentrations
from pa = 0.05 to pa = 0.95. At each concentration we add additional noise as discussed
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in appendix B. From the noisy reflectance data we extract the spectral function using the
algorithm described in section 3.2, representing the reduced spectral fugctiprhy a 100-

bin histogram. At each concentration we average over the results obtained from ten different
initial guesses for the spectral function, where the initial guess is a set of random values scaled
such that the first moment is approximately correct. Because most published reflectance data
do not give values for the experimental standard deviatiepswe set alloy, = 1. The
constraints have weights = A, = A = 1 andAgsmooth = 0.1. The fit is largely insensitive

to the actual value fok, but the relative weighting of the smoothing term is important, as is
discussed below.

Figures 4, 5, 6, and 7 show examples of the reflectaR¢®), and the reduced spectral
function, g(x), for pa = 0.50 andpa = 0.20, which are representative of the complete data
set. In the reflectance figures (figures 4 and 5) we plot the true reflectance as calculated in the
simulations, the reflectance with noise added, the reflectance fitted to the noisy data, and the
effective-medium-theory reflectance which is calculated using the agigy) andeg. Notice
that the noise is appreciable, and that the fit is generally good, especially in the restrahlen band,
wro < w < wpo. The effective-medium reflectance is a very poor fit in this region, but it is
a better fit well away from the resonance line. In contrast, away from the resonance line the
fitted reflectance and the effective-medium reflectance are essentially the same. Thisis because
away from the resonaneg andeg are both real and thus the dielectric constaand hence
the reflectance&®) must satisfy the Hashin—Shtrikman bounds [25]. Becaysandeg only
differ by a factor of two away from the resonance, these bounds are very tight and, of course,
contain the effective-medium-theory result. By construction, the fitted reflectance curve must
satisfy the Hashin—Shtrikman bounds so it must be close to the effective-medium curve. It will
not necessarily coincide with the true reflectance, because the bounds are calculated using the
noisy ea (w) andeg.

The reduced spectral functiogi(x), extracted from the reflectance data with noise added
and using the using the noisy (w) and eg, is plotted in figures 6 and 7. These figures

0.7

0.6

0.5

0.4

g(x)

0.3

0.2

0.1

\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\
<.

00 \ \ \ \ A\

Figure 6. The reduced spectral functigrix) for the 2d square net with random site disorder at
pa = 0.50. The broken curve (——-) g(x), as calculated in reference [10]. The solid curve
(—) is theg(x) obtained from the reflectance data of figure 4. The dash—dot curve-3Hs

the effective-medium-theory curve.
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Figure 7. The reduced spectral functigrx) for the 2d square net with random site disorder at
pa = 0.20. The broken curve (- —-) g(x), as calculated in reference [10]. The solid curve

(—) is theg(x) obtained from the reflectance data of figure 5. The dash—dot curve{3-s
the effective-medium-theory curve.

also contain the curvgy(x), which is the reduced spectral function as calculated directly in
reference [10], and the effective mediytx). It is clear that the fitteg(x) reproduces the
major features ofo(x) with some structure smoothed out, and some additional noise. The
major peak of the reduced spectral functios slightly shifted from its true position which is a
systematic error related to the offset in tti@) curve, discussed in section 4.1. Fora symmetric
lattice model the reduced spectral function should have the symgietry) = g(1—x, 1—p).

As can be seen from thg, = 0.5 curve shown in figure 6 (which should be symmetric about

x = 0.5) this symmetry is approximately satisfied, with deviations caused by the noise in the
simulated experimental data. As would be expected, the errors in theditt¢cre reduced

if the noise in the model is reduced, but it is apparent that we can extract a meagi@gful
from quite noisy data. If we increase the noise the quality of the fig{ad is reduced but

even with four times as much noise most of the structure remains. Finally, we note that the
fitting procedure produces a much better reduced spectral function than does effective-medium
theory.

The delta functions are removed from the reduced spectral function but their weights are
also obtained from the fitting procedure. In figure 8 we plot the weightandog for the
eleven values op. The solid curves area (p) andog(p) from the percolation problem [27]
which can be calculated directly. The curve fet(p) is zero, whenp, is less than the
percolation thresholg,. = 0.593 [13]. At the percolation threshold, starts increasing from
zero to reach unity whep, = 1. For a symmetric lattice model, the curves éarandog
are mirror images about the line = 1/2, andog(p) goes from 1 whermp, = 0 to zero at
pa = 1— p. = 0.407. Separating the delta function at the origin from weight in the spectral
function nearx = 0 is a demanding test of the analysis but, as seen in figure 8, the results are
rather good.

As an additional check on the accuracy of the fitted spectral function we give the values of
the zeroth and first moments, together with the theoretical values for the moments, in table 1.
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Figure 8. The weights of the delta functionsa (pa) (circles) andg (pa) (squares), as obtained
from the reflectance data. The solid curve (——) is from direct simulations of the percolation
problem [27]. The dash—dot curve (—) is the effective-medium-theory curve. Note that

pe=1—pa.

Table 1. The zeroth and first momenta,é, }Lg, and u1 of the fitted spectral function. The
theoretical values for the moments are given by equations (12) and3 53,1 — pa, uE = pa,
andﬂ'aheor = PwPA (l - [’A)-

pA Mg ul H1 putheor

095 00559 09450 00359 00324
090 01039 08978 00629 Q0614
080 02076 Q7931 01125 Q1091
0.70 03064 06940 01445 01432
060 04057 05947 01663 01636
050 05015 Q04986 01698 Q1704
040 06013 03988 01641 Q1636
030 07011 02990 01424 01432
0.20 07953 Q2047 01059 Q1091
010 08998 01010 00586 Q0614
0.05 09463 Q0544 (00304 Q0324

The zeroth momentgy and u§ give the area fractions of the two phases and are accurate
to better than M08. The fitted values for the first moment;, are generally accurate to
within 4% with somewhat larger percentage errorsggr= 0.05 andpa = 0.95, when the

first moment is very small. The accuracies of the zeroth moment and first moment are linked
because of equation (18).

The Lagrange multipliers in equation (25) can be adjusted in a fairly systematic way to
obtain an optimal fit while suppressing meaningless structure in the spectral function [8, 9].
The first two terms in equation (25) are model independent in the sense that if there is no noise
in the data we can fit the reflectance data and satisfy both constraints exactly. The third term is
based on thad hocassumption that the spectral function is reasonably smooth. This constraint
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can never be exactly satisfied because a constant spectral function is incompatible with the
other constraints. If we impose no constraints on the spectral function, the algorithm quickly
converges to a good fit to the reflectanReéut results in a meaningless, wildly oscillating
spectral function with large positive and negative values. If we only impose the constraint
thatoa, og, andg(x) be non-negative, the algorithm fails to converge in a reasonable number
of iterations. For any positive value af the algorithm converges to a spectral function that
is almost independent of. For all 10* < A < 1 there is no noticeable change in the
spectral function; fok < 1078 very small changes ig are observed but the principal effect of
decreasing is that forn < 108 the rate of convergence deteriorates substantially. We choose
to seth = 1. The smoothness constraint suppresses meaningless structure in the fitted spectral
function. For fixedh = 1 we varyismootn @nd monitory2. For 102 < Asmooth < 1071,
X,% is almost constant but increases for larger valuesspforr We interpret this to mean
that the smoothness constraint suppresses meaningful structure in the spectral function for
Asmooth > 0.1 but that forismeoth < 0.1 there is structure in the spectral function that cannot
be justified by the data. We choose to 5gtootn = 0.1.

We illustrate the effect of adjustingmoothin figures 9 and 10 where, to make the effect
more obvious, we have increased the noiseRiy a factor of four. The curves are for
pa = 0.50, as in figures 4 and 6. In figure 10 we plot the reduced spectral fungtipas
calculated directly in reference [10], and the reduced spectral fungtj@xtracted from the
noisy reflectance data of figure 9 with= 1, Agmooth = 0.01 and with. = 1, Agmeoth= 1.0. It
is clear that forsmeoth = 0.01 there is structure ig that is not present igg. This structure
is suppressed in thg obtained withAsmeoth = 1.0 although thex,ze of the two curves are
essentially the same. In this case, because of the increased noise in these reflectance data, the
optimal value forsmeothis 1.0.

Figures 9 and 10 also illustrate the stability of the method for extracting the spectral
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Figure 9. The reflectanceR (w), of a 2d square net with random site disorder and the concentration
pa = 0.50. The broken curve (——-) is the true reflectankBg,e(w), as calculated by the
simulations. The dashed curve-(- -) is Ryye(w) with noise added. The solid curve (—)

is the fittedR (w), which is used to determine the spectral function. The noise has been increased
by a factor of 4 compared to that in figure 4.
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Figure 10. The reduced spectral functigrix) for the 2d square net with random site disorder at
pa = 0.50. The broken curve (——-) j@(x), as calculated in reference [10]. The dashed curve
(- - - -) is theg(x) obtained from the reflectance data of figure 9 wite 1 andAsmooth = 0.01.
The solid curve (—) is thg(x) obtained from the reflectance data of figure 9 wite= 1 and
Asmooth= 1.0.

function from the reflectance data. Despite the reflectance data in figure 9 being very noisy,
there is a recognizable spectral function in figure 10, which can be compared with figure 6

obtained from data with one quarter the noise. Note that away from the restrahlen band the
fitted reflectance gives a gives a very poor fit to the noisy data because the noisy data are
inconsistent with the Hashin—Shtrikman bounds. This emphasizes the importance of having
good values for the dielectric functions of the constituent matetiglandeg, as input for the

fitting algorithm.

5. Conclusions

We have demonstrated that for a two-component model system, with physically reasonable
values for the dielectric functions of the two constituent components, it is possible to extract
the spectral function from experimentally accessible quantities. Specifically, using numerical
simulations of a 2d square net with random site substitution, we calculate the effective
reflectance as a function of frequency as we sweep through a dielectric resonance in one
of the components. From the reflectance data in the restrahlen band we are able to extract a
spectral function that is in good agreement with that obtained previously by a direct method.
Our results are stable against the introduction of noise, both in the simulated reflectance data
and the assumed values for the dielectric functions of the pure material.

The results justify an attempt to determine the spectral function for a composite material
from actual experimental data. Because the spectral function depends solely on the geometry
of the composite and not on the dielectric functions of the components, a test of this approach
would be to extract the spectral function independently from two sets of data for the same
composite, and compare the resulting spectral functions. For example, if the dielectric function
of at least one of the components depends strongly on temperature we could extract the spectral
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function independently from reflectance data taken at two different temperatures. Another
possibility would be if the pure materials had two or more resonance lines; it should be
possible to independently extract the spectral function from the reflectance data spanning each
resonance.
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Appendix A. Definition of the reduced spectral functiong(zx)

Using the definition of the normalized dielectric function of the composite, equations (2)
and (4), we have

1 1

We simplify the notation by letting = sa = 1 — s, and usesg/ea = (s — 1)/s, to obtain

1_/1hA(x)dx=s—l<1_/l hB(x)dx) (A2)
0o S—X s 0o 1—s5s—x

Collecting terms and rearranging we get

Lha(x)yde 1 1 L hg(x) dx . 1 hg(x) dx 1 hg(x) dx

/(; s —x _;< _/(; 1—x> (/0 l—s—x_,/(; (1—x)(1—s—x)>
1 1 xhg(x) dx
_EmB(l)_/o 1-x0d—s—x) (A-3)

Lets = xq + i€, wherexg ande are both real, and take the imaginary part of both the left- and
the right-hand side in the limi¢ — 0. From the LHS we get

1
lim Im(/ hat) dx ) — —ztha(x0). (A.4)
0 Xotle —xp

e=0

From the RHS we get

) 1 1 xhg(x) dx
LILT(]) Im(xo + iemB(l) _A 1-—x)A—xg—ie —x))

— — 728(xo)me(l) — 71— hg(1 - xo0) (A.5)
or XO
ha) = =D g1 - x) + 50ms (D). (A6)
Similarly we have
he(r) = 27 a1 = x) +800ma (), (A7)

Multiplying through byx and noting thaké(x) = 0, we obtain
xha(x) = (1 —x)hg(1—x) (A.8)
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from which we defing (x) = xha(x) = (1 — x)hg(1 — x). We identifymg (1) = op as the
dielectric function of the composite iy = 0, andeg = 1 or, equivalently, the conductivity

of the composite in the percolation problem when the A phase is a void, and the B phase has
unit conductivity. From (A.6) we obtain

ha(x) = % +0gd(x) (A.9)

and similarly from (A.7) we obtain

he(x) = @ +0a8(x). (A.10)

Appendix B. Noise

The noise added to the reflectance data is random Gaussian noise that is smoothed with
a window of about 100 cmt. The smoothing introduces correlations that result in high-
frequency random noise superimposed on a low-frequency random background. After the
smoothing process the amplitude of the low-frequency component of the noise varied between
0.01 and 002 with the amplitude of the high-frequency component abc2®®. This noise

can cause appreciable relative errors in the reflectance. For example, in figure 2 the error in
R(w) aroundw = 200 cnm! is about 7%. In figure 4 the error iR(w) aroundw = 410 cnT?t

is over 100%. For some values pfwe checked the fitting procedure with the noiserin
increased by factors of two and foys2 increases, as expected, and the quality of the spectral
function obtained deteriorates in a systematic way.
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