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Abstract. The dielectric function of a composite depends on the geometry of the composite and
the dielectric functions of the constituent materials. In the Bergman–Milton spectral representation
for a two-component composite, all of the relevant geometric information can be captured in a
spectral function which is independent of the material properties. Extracting the spectral function
from experimental values of the dielectric function would be a compact way of presenting a large
body of data and highlight the role of geometry in determining the electrical properties of the
composite. We show that known constraints on the spectral function make it possible to solve
the inverse problem of determining the spectral function directly from experimental measurements
of the reflectance if one of the components has a resonance and data are taken in the restrahlen
band, where the real part of the dielectric function of the optically active material is negative. We
demonstrate the method using numerical simulations of the reflectance of a model system with
physically reasonable values for the dielectric functions of the two components. Our results show
that the spectral function determined by this method is stable against the introduction of noise and
agrees with that previously calculated directly for the same model geometry. We suggest that this
technique will be useful when used with real experimental data.

1. Introduction

The problem of calculating the dielectric constant of a composite material is an old one, dating
back to Maxwell [1], and was already a mature subject by the 1970s [2, 3]. It has continued
to be a subject of active research, driven by the increasing importance of composite materials.
A significant theoretical advance was the spectral representation for the dielectric function
of a two-phase composite, independently developed by Bergman [4] and Milton [5]. This
mathematically elegant representation has the appealing property of separating the influence
of the geometry of the composite from the influence of dielectric properties of the constituent
components. The spectral function of a composite would be a compact way of representing
experimental data taken over a range of frequencies and would highlight the role of geometry
in determining the effective properties. It could also provide a link between data taken at
different temperatures for the same composite material or even completely different properties
like the dielectric function and the magnetic permeability, which will depend on the composite
geometry in the same way. Despite this, applications to the analysis of real experimental data
have been mainly limited to calculating bounds on the dielectric function of the composite,
although there have been two attempts [6, 7] to fit the dielectric response of brine-saturated
rock using an analytic form for the spectral function.
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In this paper we develop a method for extracting the spectral function directly from
experimental measurements, which can be regarded as an inverse problem [8, 9]. In this
initial paper, we will use simulated data but we plan in subsequent publications to apply the
technique to actual experimental data. By doing numerical simulations of a two-dimensional
(2d) square net with random site substitution, we will demonstrate that it is possible to solve
the inverse problem of determining the spectral function from the dielectric functions of the
pure materials and dielectric properties of the composite. Our results are in good agreement
with the spectral function obtained previously by direct methods [10]. A key result of this work
is the stability of the spectral function against the introduction of noise, both in the simulated
dielectric properties of the composite and in the assumed values for the dielectric functions of
the pure materials. Finally, we will discuss possible experiments that would provide a test of
this approach using real data.

2. The spectral function

Consider a two-component composite and label the components A and B, with dielectric
constantsεA, andεB, respectively. The dielectric constants are, in general, complex functions
of the frequencyω. The composite has a dielectric constantε which depends onεA, εB, and
the geometry of the composite. If we consider A to be the host, and B to be the inclusion, we
define the complex variable

sA = 1

1− εB/εA
(1)

and define the scaled dielectric function of the composite to bemA = ε/ εA. The spectral
functionhA(x) is defined via the integral [4,5,10–12]

mA(sA) = 1−
∫ 1

0

hA(x) dx

sA − x . (2)

The spectral functionhA(x) is a positive real function of a real variablex, and is only non-zero
in the interval 06 x < 1. It can be interpreted as the density of poles of the dielectric function
of the composite [10,11], and contains all of the geometrical information required to determine
m. In the thermodynamic limit, the line of singularities on the real intervalx ∈ [0, 1] becomes
a cut on the real axis in the complexs-plane andhA(x) is the discontinuity ofmA across the
cut [6].

Equivalently we could consider B to be the host and A the inclusion. In this case we would
have

sB = 1

1− εA/εB
(3)

and define the scaled dielectric function of the composite to bemB = ε/ εB. The spectral
functionhB(x) is defined via the integral

mB(sB) = 1−
∫ 1

0

hB(x) dx

sB − x . (4)

We show in appendix A that the spectral functionhA(x) contains a delta function atx = 0
with weight

σB = mB(1) = 1−
∫ 1

0

hB(x) dx

1− x (5)

which is the dielectric function of the composite ifεA = 0, andεB = 1. We use the notation
σB = mB(1) to emphasize thatσB is also the conductivity of the composite in the percolation
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problem [13] when the A phase is a void, and the B phase has unit conductivity [7]. The delta
function inhA (when A is the host) only has non-zero weight when the B phase (the inclusion)
percolates. Similarly,hB(x) contains a delta function atx = 0 with weight

σA = mA(1) = 1−
∫ 1

0

hA(x) dx

1− x (6)

which is the dielectric function of the composite ifεB = 0, andεA = 1. The delta function in
hB (when B is the host) only has non-zero weight when the A phase (the inclusion) percolates.
Note that whilemA,mB, ands are in general complex,σA, σB, andx are always real.

The definition of the spectral function has a simple dependence on which material, A or
B, is arbitrarily chosen as the host, because from (1) and (3)

sA + sB = 1 (7)

and we show in appendix A that

xhA(x) = (1− x)hB(1− x). (8)

This suggests the definition of a new function

g(x) = xhA(x) = (1− x)hB(1− x) (9)

which we will call thereduced spectral function. The reduced spectral function,g(x), has the
advantage of separating the delta function at the origin from the rest of the spectral function [14].
The functiong(x) is finite everywhere and goes to zero at bothx = 0 andx = 1, as we will
show later. The spectral functions,hA andhB, are then written in terms ofg as

hA(x) = g(x)

x
+ σBδ(x) (10)

and

hB(x) = g(1− x)
x

+ σAδ(x). (11)

The properties of the spectral function have been extensively studied and a number of
constraints are known [4, 5, 10, 11], which we summarize. All of the moments ofh exist and
in particular the zeroth moment satisfies

µA
0 =

∫ 1

0
hA(x) dx = pB

µB
0 =

∫ 1

0
hB(x) dx = pA

(12)

wherepA is the volume fraction of component A andpB = 1− pA is the volume fraction of
component B. Clearly

µA
0 +µB

0 = pA + pB = 1. (13)

The first moment is the same for both spectral functions,

µ1 =
∫ 1

0
xhA(x) dx =

∫ 1

0
xhB(x) dx (14)

and for an isotropic materialµ1 always has the form

µ1 = pwpApB (15)

where the parameterpw is determined from the weak-scattering limit when the difference
between the dielectric constants of the two materials, A and B, is small [15]. For a macro-
scopically isotropic continuum composite ind dimensions, withany inclusion geometry,
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pw = 1/d, as shown by Landau and Lifshitz [16]. For lattice problems there is a connection
between the weak-scattering limit and dilute limit [10,17] andpw = pI , wherepI is the initial
slope of the conductivity in the percolation problem. The initial slope can be calculated for
most lattice problems [18]. For example, a hypercubic lattice ind dimensions with random
bond substitution haspw = pI = 1/d, and the 2d square net with random site substitution
haspw = pI = 1− 1/π , which we use later in this paper. We therefore treatpw as a known
quantity.

The spectral function,h(x), may diverge in the limitx → 0 but becausehA(x) is
normalizable, any singularity atx = 0 must be integrable and thus limx=0 xhA(x) = 0.
From equation (8) this implies limx=1 hB(x) = 0. Similarly, limx=0 xhB(x) = 0 implies
limx=1 hA(x) = 0.

From the properties of the spectral function, we deduce that the reduced spectral function
g(x) is also real and positive and that all of the moments ofg exist. From the constraints on
the zeroth moments ofh(x) we obtain

σB +
∫ 1

0

g(x) dx

x
= pB

σA +
∫ 1

0

g(1− x) dx

x
= pA

(16)

and by adding these two equations we have

σB + σA +
∫ 1

0

g(x) dx

x(1− x) = 1. (17)

The first moment ofh can be rewritten as

µ1 =
∫ 1

0
g(x) dx = pw

(
σB +

∫ 1

0

g(x) dx

x

)(
σA +

∫ 1

0

g(1− x) dx

x

)
. (18)

Finally, the limits onh(x) atx = 0 andx = 1 imply

g(0) = g(1) = 0 (19)

which is also required by equation (17).

3. Determining the spectral function from experimental data

3.1. General considerations

If εA(ω), εB(ω), andε(ω) are known, the problem of determining the spectral function is
equivalent to solving the inverse problem of extractingh(x) from

m(s) = 1−
∫ 1

0

h(x) dx

s − x . (20)

wheres is a function ofω. This is an example of an inhomogeneous Fredholm equation [8] of
the first kind and, as is frequently the case [9], the kernelK(s, x) = 1/(s − x) is sufficiently
ill-conditioned that experimental noise inm will result in a meaningless, wildly oscillating
solution for h. The standard method of dealing with this problem is to includea priori
knowledge about the solution into the kernel, a process known as regularization [8, 9]. The
simplest form of regularization usually involves some assumption about the smoothness of
the solution, but anya priori knowledge can be included. As we will show below, the known
properties of the spectral function discussed in section 2 provide sufficienta priori knowledge
to regularize the kernel.
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In addition to the problem of regularization, there is the problem of loss of information
when we take data at a discrete set of data points. The integral transform, equation (20), is a
smoothing or broadening process and, even in principle, it is only possible to do the complete
unfolding for a continuum of data. To minimize this loss of information we would like the
kernel, or broadening function, to be as sharp as possible. This is achieved when the data are
taken for values ofs that are close to the cutx ∈ [0, 1]. In previous work [10] we determined
the spectral function for random networks by doing numerical simulations ofm on a track just
above the cut. The imaginary part of the resultingm was the spectral function, convoluted
with a narrow Lorentzian function.

In an actual experiment, thes-values are determined by the dielectric functions of the
two components. We obtain the desireds-track, that passes near to the cut, if there are data
over a frequency range where Re(εA/εB) < 0 which can be achieved if at least one of the
materials has at least one resonance. A convenient case is that when there is a resonance in one
material, while the other material is essentially inert. For example, suppose component B has
a constant real dielectric functionεB(ω) = εB and component A has a resonance at a frequency
ωTO . For frequencies between the transverse optic frequency,ωTO , and the longitudinal optic
frequency,ωLO , the real part ofεA is negative ands follows a track just above or just below the
cut x ∈ [0, 1]. Thus, the data in this restrahlen band [19] will be the best data for the inverse
problem of extractingh from m. The distance from the track to the cut (i.e. the imaginary
part of s) is proportional to the width of the resonance and consequently a sharp resonance
line is best for extracting the spectral function. As with the numerical simulations [10], if the
linewidth is very narrow the spectral function is simply proportional to the imaginary part of
m [20]. Previous attempts at obtaining the spectral function from the dielectric function of
brine-saturated rock [6,7] have had limited success because the data were taken at values ofs

away from the branch cut, and thus could not resolve the structure in the spectral function.
For most materials, direct measurement of the dielectric function at the appropriate

frequencies (betweenωTO andωLO) is not possible. The experimentally accessible quantity
is the reflectance at normal incidence,R(ω), which is related to the dielectric function via

R =
∣∣∣∣√ε − 1√
ε + 1

∣∣∣∣2 . (21)

The complex dielectric constant can be obtained from the complex reflectivity,r = ρeiθ ,
whereρ = √R. If R(ω) is measured over a wide frequency range the phase shiftθ(ω) can be
determined by extrapolating the data to low and high frequencies and performing a Kramers–
Kronig analysis. Although this is a standard procedure [21] it does introduce additional errors
intoε so we bypass the Kramers–Kronig analysis and extract the spectral function directly from
reflectance data. This results in a very non-linear inversion problem but this complication is
more than compensated for by the fact that we only use measured data, and no extrapolations
are needed. It has the added advantage that the constraints imposed on the spectral function
guarantee that the resulting dielectric function of the composite satisfies the Kramers–Kronig
relations [22], and the Bergman–Milton bounds [4,5].

3.2. The numerical algorithm

We develop an algorithm to determine the spectral function by doing a non-linear least-squares
fit to reflectance data with additional constraints imposed to ensure that the spectral function
has all of the properties listed in section 2. We minimize thechi-squaredfunction

χ2 = χ2
constraint+ χ

2
R (22)
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where the functionχ2
constraintimposes the constraints of section 2 and the functionχ2

R is defined
as

χ2
R =

∑
k

(
Rk − R(ωk, εA, εB, g, σA, σB)

σk

)2

. (23)

TheRk andσk are experimental values for the reflectance and their standard deviations, taken at
a set of frequenciesωk. The functionR(ωk, εA, εB, g, σA, σB) determines the reflectance at the
pointssk = s(ωk). It depends on theknowndielectric functions of the pure materials,εA(ωk)

andεB(ωk), and theunknownspectral function, expressed as the reduced spectral function,
g(x), and the weights of the delta functions,σA andσB. The unknowns are adjusted to obtain
the best fit to the data, subject to the constraints. The algorithm is highly non-linear because
we must first calculateε(g, σA, σB, εA, εB) and then calculateR(ε) using equation (21). The
dielectric function of the composite is calculated in a completely symmetric way, that makes
no distinction between host and inclusion, via

ε(ω) = 1

2
εA

(
1− σB

sA
−
∫ 1

0

g(x) dx

x(sA − x)
)

+
1

2
εB

(
1− σA

sB
+
∫ 1

0

g(1− x) dx

x(sB − x)
)
. (24)

The functionχ2
constraintis defined as

χ2
constraint= λ1

∣∣∣∣σA + σB +
∫ 1

0

g(x) dx

x(1− x) − 1

∣∣∣∣2
+ λ2

∣∣∣∣pw(σB +
∫ 1

0

g(x) dx

x

)(
σA +

∫ 1

0

g(1− x) dx

x

)
−
∫ 1

0
g(x) dx

∣∣∣∣2
+ λsmooth|∇g(x)|2 (25)

where the first two terms impose thea priori knowledge ofg(x) from equations (17) and (18)
and the third term is a smoothing term that can be included as necessary. Theλi are Lagrange
multipliers which can be adjusted for stability, as will be discussed in section 4.2. Note that
these constraints do not involve any experimental information about the composite geometry,
not even the volume fractions which will be obtained from the fit to the data. We assume that
pw is known which will be the case for most composites of interest, as discussed in section 2.
For example,pw = 1/3 for all macroscopically isotropic continuum composites.

The minimization is implemented using a Levenberg–Marquardt algorithm [23] written
so as to forbid negative values forσA, σB, andg(x). The weights of the delta functions,σA

andσB, are discrete variables and we use a histogram representation forg(x). The gradient
term in equation (25) is represented as a finite-difference operator and within the histogram
representation of the reduced spectral functiong, the integrations are done exactly. Because the
minimization process is non-linear, we average over the results obtained from several different
initial guesses forg(x).

We conclude this section with a few comments on experimental considerations. It is
worth making a considerable effort to determineεA andεB as accurately as possible because
errors inεA andεB propagate through the solution. This suggests that for the pure system,
reflection data should be taken over the widest frequency range possible before performing the
Kramers–Kronig analysis to obtain the real and imaginary parts of the dielectric function. Or, if
possible, ellipsometry should be used to determine the real and imaginary parts directly [24]. It
is less important to measure the reflectance of the composite over an extended frequency range
because no Kramers–Kronig analysis is required. Away from the restrahlen band the dielectric
functionsεA andεB are both real, and are often similar in magnitude. Under these conditions the
dielectric functionε is essentially determined by the Hashin–Shtrikman bounds [25], which
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are very tight whenεA and εB have similar magnitudes. We also note that although the
principal goal in this work is to develop a method for determining the spectral function, this
approach also gives a useful method of extracting the dielectric function from the reflectance
for the special case of a two-component composite, where the dielectric functions of the pure
materials are known. By including the additional input of the dielectric functions of the pure
materials,εA and εB, the method is superior to one relying only on the reflectance of the
composite. By construction, the dielectric function of the composite will satisfy the Kramers–
Kronig relationship and all bounds that depend on only the isotropy of the composite and the
volume fractions. An inability to obtain a good fit to the data would indicate problems in the
reflectance data, the dielectric functions of the pure materials, the assumption that the data are
for a two-component material, or some combination of these three.

4. Numerical test of the method

4.1. The model

We have tested the algorithm using data generated by numerical simulations on a 2d square
network with random site substitution, as shown in figure 1. Sites are randomly chosen to be
type A with probabilitypA and type B with probabilitypB = 1− pA. Bonds connecting two
A sites have a dielectric functionεA, bonds connecting two B sites have dielectric functionεB,
and bonds connecting an A site to a B site have a dielectric function 2εAεB/(εA + εB), so the
model is completely symmetric under an A↔ B andpA ↔ pB interchange. For material A
we assign a dielectric functionεA(ω) that exhibits a single resonance line and assign a constant
value forεB. This results ins(ω) following a track in the complexs-plane that passes near
the cutx ∈ [0, 1]. At each probability we calculate the dielectric function of the composite
ε(ω) for a range of frequencies that sweep through the resonance line of material A. From the
dielectric function we determine the reflectance

R(ω) = ∣∣(√ε − 1)/(
√
ε + 1)

∣∣2 .
We then regardR(ω) as theexperimentaldata and proceed with the inverse problem of
determining the spectral function from these data. The direct simulations were done on a 128-

Figure 1. A 2d square net with random site substitution.
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by-128 square lattice at 500 frequencies and averaged over 64 realizations at each probability.
The dielectric function of the composite is calculated using aY–1 transformation [26], where
we consider each bond to have an appropriate complex impedance, and we calculate the
equivalent impedance of the network.

Because actual experimental data will always have some random noise, and perhaps
systematic errors, our test is only valid if we introduce noise into the data. We note that there
are two sources of error. There are errors in the assumed values for the dielectric functions of
the pure materials,εA andεB, which lead to errors ins(ω), and there are errors in the composite
property,R(ω). Errors inεA andεB are the most damaging because they propagate through
every step of the calculation and, as discussed in the previous section, they are the most difficult
to reduce because we need both the real and imaginary parts of the dielectric functions of the
pure material.

We introduce errors into our simulated data in two ways. We calculateR(ω) exactly
using a model where the A material has a dielectric functionεtrue(ω) which exhibits a single
resonance line, and the B material has a frequency-independent dielectric constantεB = 10.
The reflectance data already include some noise, because we only average over 64 random
samples at each probability, but we add additional noise with a maximum amplitude of 0.02,
as discussed in appendix B. We do the analysis using a noisy value forεA, as discussed below.

We introduce noise intoεA in the following way. To material A we assign a dielectric
function consisting of two closely spaced Lorentz oscillators which results in a dielectric
function with the appearance of a single resonance line. The dielectric function can be written
as

εtrue(ω) = ε∞
(

1 +
ω2
P,1

ω2
TO,1− ω2 − iγ1ω

+
ω2
P,2

ω2
TO,2 − ω2 − iγ2ω

)
. (26)

We chooseε∞ = 5.0 and, for the first oscillator,ωP,1 = 173.2 cm−1, ωTO,1 = 299 cm−1, and
γ1 = 10.2 cm−1. For the second oscillator we chooseωP,2 = 223.6 cm−1,ωTO,2 = 301 cm−1,
andγ2 = 9.8 cm−1. We then calculateR(ω) from εtrue(ω) and add some noise to the reflect-
ance. Finally, we fit this noisy reflectance curve with asingleLorentz oscillator of the form

εA(ω) = ε∞
(

1 +
ω2
P

ω2
TO − ω2 − iγω

)
(27)

which is used in the analysis. The fittedεA(ω) has ε∞ = 5.217, ωP = 282.4 cm−1,
ωTO = 300.6 cm−1, γ = 9.860 cm−1, andωLO = √(ω2

P + ω2
TO) = 412.5 cm−1. This

results in an error of about 4% inεA at high and low frequencies, but with a much smaller
percentage error near the resonance peak. We consider this error inεA(ω), and the resulting
error ins(ω), to be systematic error.

Figure 2 is a plot of the reflectance of the pure A system. We show the true reflectance as
calculated fromεtrue(ω), the reflectance with noise added, and the fitted reflectance that gives
εA(ω). These curves indicate that the errors introduced have magnitudes that are probably
representative of real experimental errors.

Figure 3 is a plot in the complexs-plane of bothstrue(ω) (calculated fromεtrue(ω) andεB)
ands(ω) (calculated from the fittedεA(ω), andεB) which is used in the analysis. The two
curves are similar in the frequency range 300 cm−1 < ω < 400 cm−1 where they are closest
to the cut, except that there is a kink in thestrue(ω) curve (caused by the double oscillator) near
300 cm−1, and the two curves are slightly offset (by aboutx = 0.01 nearω = 350 cm−1). The
s(ω) track is completely determined by the properties of the pure materials and is the same for
each set of data (i.e. each probabilityp). We show bothsA(ω) (in the lower half-plane) and
sB(ω) (in the upper half-plane) and indicate the approximate frequency at various points on
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Figure 2. The reflectance of the pure A system as a function of the frequency. The broken curve
(– – –) isRtrue(ω), as calculated fromεtrue (equation (26)). The dashed curve (- - - -) is Rtrue(ω)

with noise added. The solid curve (——) is the fittedR(ω), which givesεA (ω) (equation (27)), as
discussed in section 4.1.
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Figure 3. A plot of the complex variables(ω) for the model system. The broken curve (– – –) is
the curvestrue(ω), calculated from the true dielectric constantsεtrue(ω) andεB. The solid curve
(——) is the value ofs(ω) obtained using the noisyεA (ω), as discussed in section 4.1. The arrows
indicate the approximate frequencies at various points on the track and the thick line indicates the
cut x ∈ [0, 1]. The curves in the upper half-plane aresB, where B is taken as the host; the curves
in the lower half-plane aresA, where A is taken as the host.

the curves. BecausesA + sB = 1 the two tracks are related by a reflection about thex- (real)
axis, followed by a reflection about the linex = 0.5. The thick line on the real axis indicates
the cut where the spectral functionh(x) is non-zero.
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Figure 4. The reflectance,R(ω), of a 2d square net with random site disorder and the concentration
pA = 0.50. The broken curve (– – –) is the true reflectance,Rtrue(ω), as calculated by the simul-
ations. The dashed curve (- - - -) is Rtrue(ω) with noise added. The solid curve (——) is the
fittedR(ω), which is used to determine the spectral function. The dash–dot curve (—·—) is the
effective-medium-theory curve.
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Figure 5. The reflectance,R(ω), of a 2d square net with random site disorder and the concentration
pA = 0.20. The broken curve (– – –) is the true reflectance,Rtrue(ω), as calculated by the simul-
ations. The dashed curve (- - - -) is Rtrue(ω) with noise added. The solid curve (——) is the
fittedR(ω), which is used to determine the spectral function. The dash–dot curve (—·—) is the
effective-medium-theory curve.

4.2. Results

We compute data for the reflectance of our model composite at eleven different concentrations
from pA = 0.05 topA = 0.95. At each concentration we add additional noise as discussed
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in appendix B. From the noisy reflectance data we extract the spectral function using the
algorithm described in section 3.2, representing the reduced spectral function,g(x), by a 100-
bin histogram. At each concentration we average over the results obtained from ten different
initial guesses for the spectral function, where the initial guess is a set of random values scaled
such that the first moment is approximately correct. Because most published reflectance data
do not give values for the experimental standard deviations,σk, we set allσk = 1. The
constraints have weightsλ1 = λ2 = λ = 1 andλsmooth= 0.1. The fit is largely insensitive
to the actual value forλ, but the relative weighting of the smoothing term is important, as is
discussed below.

Figures 4, 5, 6, and 7 show examples of the reflectance,R(ω), and the reduced spectral
function,g(x), for pA = 0.50 andpA = 0.20, which are representative of the complete data
set. In the reflectance figures (figures 4 and 5) we plot the true reflectance as calculated in the
simulations, the reflectance with noise added, the reflectance fitted to the noisy data, and the
effective-medium-theory reflectance which is calculated using the noisyεA(ω) andεB. Notice
that the noise is appreciable, and that the fit is generally good, especially in the restrahlen band,
ωTO < ω < ωLO . The effective-medium reflectance is a very poor fit in this region, but it is
a better fit well away from the resonance line. In contrast, away from the resonance line the
fitted reflectance and the effective-medium reflectance are essentially the same. This is because
away from the resonanceεA andεB are both real and thus the dielectric constantε (and hence
the reflectanceR) must satisfy the Hashin–Shtrikman bounds [25]. BecauseεA andεB only
differ by a factor of two away from the resonance, these bounds are very tight and, of course,
contain the effective-medium-theory result. By construction, the fitted reflectance curve must
satisfy the Hashin–Shtrikman bounds so it must be close to the effective-medium curve. It will
not necessarily coincide with the true reflectance, because the bounds are calculated using the
noisyεA(ω) andεB.

The reduced spectral function,g(x), extracted from the reflectance data with noise added
and using the using the noisyεA(ω) and εB, is plotted in figures 6 and 7. These figures
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Figure 6. The reduced spectral functiong(x) for the 2d square net with random site disorder at
pA = 0.50. The broken curve (– – –) isg0(x), as calculated in reference [10]. The solid curve
(——) is theg(x) obtained from the reflectance data of figure 4. The dash–dot curve (—·—) is
the effective-medium-theory curve.
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Figure 7. The reduced spectral functiong(x) for the 2d square net with random site disorder at
pA = 0.20. The broken curve (– – –) isg0(x), as calculated in reference [10]. The solid curve
(——) is theg(x) obtained from the reflectance data of figure 5. The dash–dot curve (—·—) is
the effective-medium-theory curve.

also contain the curveg0(x), which is the reduced spectral function as calculated directly in
reference [10], and the effective mediumg(x). It is clear that the fittedg(x) reproduces the
major features ofg0(x) with some structure smoothed out, and some additional noise. The
major peak of the reduced spectral functiong is slightly shifted from its true position which is a
systematic error related to the offset in thes(ω) curve, discussed in section 4.1. For a symmetric
lattice model the reduced spectral function should have the symmetryg(x, p) = g(1−x, 1−p).
As can be seen from thepA = 0.5 curve shown in figure 6 (which should be symmetric about
x = 0.5) this symmetry is approximately satisfied, with deviations caused by the noise in the
simulated experimental data. As would be expected, the errors in the fittedg(x) are reduced
if the noise in the model is reduced, but it is apparent that we can extract a meaningfulg(x)

from quite noisy data. If we increase the noise the quality of the fittedg(x) is reduced but
even with four times as much noise most of the structure remains. Finally, we note that the
fitting procedure produces a much better reduced spectral function than does effective-medium
theory.

The delta functions are removed from the reduced spectral function but their weights are
also obtained from the fitting procedure. In figure 8 we plot the weightsσA andσB for the
eleven values ofpA. The solid curves areσA(p) andσB(p) from the percolation problem [27]
which can be calculated directly. The curve forσA(p) is zero, whenpA is less than the
percolation thresholdpc = 0.593 [13]. At the percolation threshold,σA starts increasing from
zero to reach unity whenpA = 1. For a symmetric lattice model, the curves forσA andσB

are mirror images about the linep = 1/2, andσB(p) goes from 1 whenpA = 0 to zero at
pA = 1− pc = 0.407. Separating the delta function at the origin from weight in the spectral
function nearx = 0 is a demanding test of the analysis but, as seen in figure 8, the results are
rather good.

As an additional check on the accuracy of the fitted spectral function we give the values of
the zeroth and first moments, together with the theoretical values for the moments, in table 1.
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Figure 8. The weights of the delta functions,σA (pA ) (circles) andσB(pA ) (squares), as obtained
from the reflectance data. The solid curve (——) is from direct simulations of the percolation
problem [27]. The dash–dot curve (—·—) is the effective-medium-theory curve. Note that
pB = 1− pA.

Table 1. The zeroth and first moments,µA
0 , µB

0 , andµ1 of the fitted spectral function. The
theoretical values for the moments are given by equations (12) and (15),µA

0 = 1− pA, µB
0 = pA,

andµtheor
1 = pwpA (1− pA ).

pA µA
0 µB

0 µ1 µtheor
1

0.95 0.0559 0.9450 0.0359 0.0324
0.90 0.1039 0.8978 0.0629 0.0614
0.80 0.2076 0.7931 0.1125 0.1091
0.70 0.3064 0.6940 0.1445 0.1432
0.60 0.4057 0.5947 0.1663 0.1636
0.50 0.5015 0.4986 0.1698 0.1704
0.40 0.6013 0.3988 0.1641 0.1636
0.30 0.7011 0.2990 0.1424 0.1432
0.20 0.7953 0.2047 0.1059 0.1091
0.10 0.8998 0.1010 0.0586 0.0614
0.05 0.9463 0.0544 0.0304 0.0324

The zeroth momentsµA
0 andµB

0 give the area fractions of the two phases and are accurate
to better than 0.008. The fitted values for the first moment,µ1, are generally accurate to
within 4% with somewhat larger percentage errors forpA = 0.05 andpA = 0.95, when the
first moment is very small. The accuracies of the zeroth moment and first moment are linked
because of equation (18).

The Lagrange multipliers in equation (25) can be adjusted in a fairly systematic way to
obtain an optimal fit while suppressing meaningless structure in the spectral function [8, 9].
The first two terms in equation (25) are model independent in the sense that if there is no noise
in the data we can fit the reflectance data and satisfy both constraints exactly. The third term is
based on thead hocassumption that the spectral function is reasonably smooth. This constraint
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can never be exactly satisfied because a constant spectral function is incompatible with the
other constraints. If we impose no constraints on the spectral function, the algorithm quickly
converges to a good fit to the reflectanceR but results in a meaningless, wildly oscillating
spectral function with large positive and negative values. If we only impose the constraint
thatσA, σB, andg(x) be non-negative, the algorithm fails to converge in a reasonable number
of iterations. For any positive value ofλ, the algorithm converges to a spectral function that
is almost independent ofλ. For all 10−4 < λ < 1 there is no noticeable change in the
spectral function; forλ < 10−6 very small changes ing are observed but the principal effect of
decreasingλ is that forλ < 10−8 the rate of convergence deteriorates substantially. We choose
to setλ = 1. The smoothness constraint suppresses meaningless structure in the fitted spectral
function. For fixedλ = 1 we varyλsmooth and monitorχ2

R. For 10−3 < λsmooth < 10−1,
χ2
R is almost constant but increases for larger values ofλsmooth. We interpret this to mean

that the smoothness constraint suppresses meaningful structure in the spectral function for
λsmooth> 0.1 but that forλsmooth< 0.1 there is structure in the spectral function that cannot
be justified by the data. We choose to setλsmooth= 0.1.

We illustrate the effect of adjustingλsmooth in figures 9 and 10 where, to make the effect
more obvious, we have increased the noise inR by a factor of four. The curves are for
pA = 0.50, as in figures 4 and 6. In figure 10 we plot the reduced spectral function,g0, as
calculated directly in reference [10], and the reduced spectral function,g, extracted from the
noisy reflectance data of figure 9 withλ = 1, λsmooth= 0.01 and withλ = 1, λsmooth= 1.0. It
is clear that forλsmooth= 0.01 there is structure ing that is not present ing0. This structure
is suppressed in theg obtained withλsmooth = 1.0 although theχ2

R of the two curves are
essentially the same. In this case, because of the increased noise in these reflectance data, the
optimal value forλsmoothis 1.0.

Figures 9 and 10 also illustrate the stability of the method for extracting the spectral
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Figure 9. The reflectance,R(ω), of a 2d square net with random site disorder and the concentration
pA = 0.50. The broken curve (– – –) is the true reflectance,Rtrue(ω), as calculated by the
simulations. The dashed curve (- - - -) is Rtrue(ω) with noise added. The solid curve (——)
is the fittedR(ω), which is used to determine the spectral function. The noise has been increased
by a factor of 4 compared to that in figure 4.
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Figure 10. The reduced spectral functiong(x) for the 2d square net with random site disorder at
pA = 0.50. The broken curve (– – –) isg0(x), as calculated in reference [10]. The dashed curve
(- - - -) is theg(x) obtained from the reflectance data of figure 9 withλ = 1 andλsmooth= 0.01.
The solid curve (——) is theg(x) obtained from the reflectance data of figure 9 withλ = 1 and
λsmooth= 1.0.

function from the reflectance data. Despite the reflectance data in figure 9 being very noisy,
there is a recognizable spectral function in figure 10, which can be compared with figure 6
obtained from data with one quarter the noise. Note that away from the restrahlen band the
fitted reflectance gives a gives a very poor fit to the noisy data because the noisy data are
inconsistent with the Hashin–Shtrikman bounds. This emphasizes the importance of having
good values for the dielectric functions of the constituent materials,εA andεB, as input for the
fitting algorithm.

5. Conclusions

We have demonstrated that for a two-component model system, with physically reasonable
values for the dielectric functions of the two constituent components, it is possible to extract
the spectral function from experimentally accessible quantities. Specifically, using numerical
simulations of a 2d square net with random site substitution, we calculate the effective
reflectance as a function of frequency as we sweep through a dielectric resonance in one
of the components. From the reflectance data in the restrahlen band we are able to extract a
spectral function that is in good agreement with that obtained previously by a direct method.
Our results are stable against the introduction of noise, both in the simulated reflectance data
and the assumed values for the dielectric functions of the pure material.

The results justify an attempt to determine the spectral function for a composite material
from actual experimental data. Because the spectral function depends solely on the geometry
of the composite and not on the dielectric functions of the components, a test of this approach
would be to extract the spectral function independently from two sets of data for the same
composite, and compare the resulting spectral functions. For example, if the dielectric function
of at least one of the components depends strongly on temperature we could extract the spectral
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function independently from reflectance data taken at two different temperatures. Another
possibility would be if the pure materials had two or more resonance lines; it should be
possible to independently extract the spectral function from the reflectance data spanning each
resonance.
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Appendix A. Definition of the reduced spectral functiong(x)

Using the definition of the normalized dielectric function of the composite, equations (2)
and (4), we have

ε = εA

(
1−

∫ 1

0

hA(x) dx

sA − x
)
= εB

(
1−

∫ 1

0

hB(x) dx

sB − x
)
. (A.1)

We simplify the notation by lettings = sA = 1− sB, and useεB/εA = (s − 1)/s, to obtain

1−
∫ 1

0

hA(x) dx

s − x = s − 1

s

(
1−

∫ 1

0

hB(x) dx

1− s − x
)
. (A.2)

Collecting terms and rearranging we get∫ 1

0

hA(x) dx

s − x = 1

s

(
1−

∫ 1

0

hB(x) dx

1− x
)

+

(∫ 1

0

hB(x) dx

1− s − x −
∫ 1

0

hB(x) dx

(1− x)(1− s − x)
)

= 1

s
mB(1)−

∫ 1

0

xhB(x) dx

(1− x)(1− s − x) . (A.3)

Let s = x0 + iε, wherex0 andε are both real, and take the imaginary part of both the left- and
the right-hand side in the limitε → 0. From the LHS we get

lim
ε=0

Im

(∫ 1

0

hA(x) dx

x0 + iε − x A

)
= −πhA(x0). (A.4)

From the RHS we get

lim
ε=0

Im

(
1

x0 + iε
mB(1)−

∫ 1

0

xhB(x) dx

(1− x)(1− x0 − iε − x)
)

= − πδ(x0)mB(1)− π 1− x0

x0
hB(1− x0) (A.5)

or

hA(x) = (1− x)
x

hB(1− x) + δ(x)mB(1). (A.6)

Similarly we have

hB(x) = (1− x)
x

hA(1− x) + δ(x)mA(1). (A.7)

Multiplying through byx and noting thatxδ(x) = 0, we obtain

xhA(x) = (1− x)hB(1− x) (A.8)
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from which we defineg(x) = xhA(x) = (1− x)hB(1− x). We identifymB(1) = σB as the
dielectric function of the composite ifεA = 0, andεB = 1 or, equivalently, the conductivity
of the composite in the percolation problem when the A phase is a void, and the B phase has
unit conductivity. From (A.6) we obtain

hA(x) = g(x)

x
+ σBδ(x) (A.9)

and similarly from (A.7) we obtain

hB(x) = g(1− x)
x

+ σAδ(x). (A.10)

Appendix B. Noise

The noise added to the reflectance data is random Gaussian noise that is smoothed with
a window of about 100 cm−1. The smoothing introduces correlations that result in high-
frequency random noise superimposed on a low-frequency random background. After the
smoothing process the amplitude of the low-frequency component of the noise varied between
0.01 and 0.02 with the amplitude of the high-frequency component about 0.002. This noise
can cause appreciable relative errors in the reflectance. For example, in figure 2 the error in
R(ω) aroundω = 200 cm−1 is about 7%. In figure 4 the error inR(ω) aroundω = 410 cm−1

is over 100%. For some values ofp we checked the fitting procedure with the noise inR
increased by factors of two and four.χ2

R increases, as expected, and the quality of the spectral
function obtained deteriorates in a systematic way.
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